531 research outputs found

    Essential plasticity and redundancy of metabolism unveiled by synthetic lethality analysis

    Full text link
    We unravel how functional plasticity and redundancy are essential mechanisms underlying the ability to survive of metabolic networks. We perform an exhaustive computational screening of synthetic lethal reaction pairs in Escherichia coli in a minimal medium and we find that synthetic lethal pairs divide in two different groups depending on whether the synthetic lethal interaction works as a backup or as a parallel use mechanism, the first corresponding to essential plasticity and the second to essential redundancy. In E. coli, the analysis of pathways entanglement through essential redundancy supports the view that synthetic lethality affects preferentially a single function or pathway. In contrast, essential plasticity, the dominant class, tends to be inter-pathway but strongly localized and unveils Cell Envelope Biosynthesis as an essential backup for Membrane Lipid Metabolism. When comparing E. coli and Mycoplasma pneumoniae, we find that the metabolic networks of the two organisms exhibit a large difference in the relative importance of plasticity and redundancy which is consistent with the conjecture that plasticity is a sophisticated mechanism that requires a complex organization. Finally, coessential reaction pairs are explored in different environmental conditions to uncover the interplay between the two mechanisms. We find that synthetic lethal interactions and their classification in plasticity and redundancy are basically insensitive to medium composition, and are highly conserved even when the environment is enriched with nonessential compounds or overconstrained to decrease maximum biomass formation.Comment: 22 pages, 4 figure

    ESADE: une institution citadine

    Get PDF

    ESADE: A Civic Institution

    Get PDF

    ESADE: una institución ciudadana

    Get PDF

    Assessing the significance of knockout cascades in metabolic networks

    Full text link
    Complex networks have been shown to be robust against random structural perturbations, but vulnerable against targeted attacks. Robustness analysis usually simulates the removal of individual or sets of nodes, followed by the assessment of the inflicted damage. For complex metabolic networks, it has been suggested that evolutionary pressure may favor robustness against reaction removal. However, the removal of a reaction and its impact on the network may as well be interpreted as selective regulation of pathway activities, suggesting a tradeoff between the efficiency of regulation and vulnerability. Here, we employ a cascading failure algorithm to simulate the removal of single and pairs of reactions from the metabolic networks of two organisms, and estimate the significance of the results using two different null models: degree preserving and mass-balanced randomization. Our analysis suggests that evolutionary pressure promotes larger cascades of non-viable reactions, and thus favors the ability of efficient metabolic regulation at the expense of robustness
    corecore